279 research outputs found

    Discovery of Gas Bulk Motion in the Galaxy Cluster Abell 2256 with Suzaku

    Full text link
    The results from Suzaku observations of the galaxy cluster Abell2256 are presented. This cluster is a prototypical and well-studied merging system, exhibiting substructures both in the X-ray surface brightness and in the radial velocity distribution of member galaxies. There are main and sub components separating by 3'.5 in the sky and by about 2000 km s1^{-1} in radial velocity peaks of member galaxies. In order to measure Doppler shifts of iron K-shell lines from the two gas components by the Suzaku XIS, the energy scale of the instrument was evaluated carefully and found to be calibrated well. A significant shift of the radial velocity of the sub component gas with respect to that of the main cluster was detected. All three XIS sensors show the shift independently and consistently among the three. The difference is found to be 1500 ±300\pm 300 (statistical) ±300\pm 300 (systematic) km s1^{-1}. The X-ray determined absolute redshifts of and hence the difference between the main and sub components are consistent with those of member galaxies in optical. The observation indicates robustly that the X-ray emitting gas is moving together with galaxies as a substructure within the cluster. These results along with other X-ray observations of gas bulk motions in merging clusters are discussed.Comment: Accepted for publication in PASJ in 2011-03-2

    Isoliquiritigenin: A Unique Component That Attenuates Adipose Tissue Inflammation and Fibrosis by Targeting the Innate Immune Sensors

    Get PDF
    Recent studies have suggested that pattern recognition receptors, including inflammasomes and TLRs, in the innate immune system recognize various kinds of endogenous ligands and have critical roles in initiating or promoting obesity‐associated chronic inflammation. These findings have provided new therapeutic strategies based on regulation of the innate immune system. With the rapid advancement of novel technologies and the increased research on natural products, many new plant‐derived extracts and active compounds have been identified to exhibit anti‐inflammatory effects. Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis with a chalcone structure. We have reported that ILG inhibits NLRP3 inflammasome activation resulting in the improvement of diet‐induced adipose tissue inflammation and insulin resistance. Furthermore, we have also demonstrated that ILG improves diet‐induced fibrosis in adipose tissue by inhibiting TLR4‐ and Mincle‐induced expression of fibrosis‐related genes in obese adipose tissue and macrophages. Thus, ILG can suppress two important dysfunctions of obesity, adipose tissue inflammation and fibrosis by targeting innate immune sensors. Here we overview ILG as a potential therapeutic agent for the treatment of obesity‐associated diseases. We also summarize anti‐inflammatory actions of other constituents of licorice

    Monoclonal antibody to galactosylceramide: discrimination of structural difference in the ceramide moiety

    Get PDF
    AbstractA mouse monoclonal antibody (mAb) was developed against monohexaosylceramide. This mAb differentially reacted on thin-layer chromatograms with 3 types of galactosylceramide (GalCer) obtained from bovine brain. Structural analysis of the 3 glycolipids revealed that they consisted of the same galactose and sphingosine but of apparently different fatty acids. Among the 3 GalCers, the mAb reacted with two GalCers which contained α-hydroxy fatty acids, but not with GalCer composed of nonhydroxy fatty acids. These findings suggest not only that the mAb discriminated the fatty acid composition in the ceramide moiety of GalCer, but also that the ceramide structure defines the immunological epitope as it is known to do for the carbohydrate moiety of glycosphingolipid

    A feasible study of EEG-driven assistive robotic system for stroke rehabilitation

    Get PDF
    Stroke is a medical emergency and can cause a neurological damage, affecting the motor and sensory systems. Harnessing brain plasticity should make it possible to reconstruct the closed loop between the brain and the body, i.e., association of the generation of the motor command with the somatic sensory feedback might enhance motor recovery. In order to aid reconstruction of this loop with a robotic device it is necessary to assist the paretic side of the body at the right moment to achieve simultaneity between motor command and feedback signal to somatic sensory area in brain. To this end, we propose an integrated EEG-driven assistive robotic system for stroke rehabilitation. Depending on the level of motor recovery, it is important to provide adequate stimulation for upper limb motion. Thus, we propose an assist arm incorporating a Magnetic Levitation Joint that can generate a compliant motion due to its levitation and mechanical redundancy. This paper reports on a feasibility study carried out to verify the validity of the robot sensing and on EEG measurements conducted with healthy volunteers while performing a spontaneous arm flexion/extension movement. A characteristic feature was found in the temporal evolution of EEG signal in the single motion prior to executed motion which can aid in coordinating timing of the robotic arm assistance onset

    Antisense RNA transcripts in the blood may be novel diagnostic markers for colorectal cancer

    Get PDF
    Numerous genetic studies have been conducted regarding the occurrence of colorectal cancer (CRC) and the prognosis using microarrays. However, adequate investigations into the diagnostic application of microarrays have yet to be performed. The simplicity and accuracy of diagnosis and prognosis tracking are important requirements for its processes, and the use of blood cells for diagnosis is considered to be suitable to meet these requirements. The patients involved in the study were 28 preoperative patients with CRC and 6 healthy individuals who served as controls. RNA was extracted from the blood cells of the patients and analyzed using a sense/antisense RNA custom microarray. In the patients with CRC, the expression levels of 20 sense RNA and 20 antisense RNA species were identified as being significantly altered compared with that of the healthy volunteers (P2.0). Cluster analysis of these RNA species revealed that the top 10 antisense RNAs significantly clustered patients with cancer and healthy individuals separately. Patients with stage I or II CRC exhibited significant changes in the expression levels of 33 sense and 39 antisense RNA species, as compared with healthy volunteers (P2.0). Cluster analysis demonstrated that patients with stage I or II CRC and healthy volunteers formed separate clusters only among the top 20 antisense RNA species. A tracking study of expression levels of haloacid dehalogenase‑like hydrolase domain‑containing 1 (HDHD1) antisense RNA was performed and a significant difference was identified between the CRC and healthy groups revealing that the levels at one week and three months following surgical removal of the cancerous tissue, decreased to almost same levels of the healthy individuals. The results of the current study indicate that HDHD1 antisense RNA may serve as a potential biomarker for the prognosis of CRC
    corecore